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The present work is aimed at developing a methodology for aeroelastic analysis of lifting surfaces in the transonic
regime using an unsteady computational fluid dynamics tool for the calculation of the aerodynamic operator. The
applied computational fluid dynamics tool solves the flow problem modeled by the two-dimensional Euler equations
using the finite volume method applied in an unstructured grid context. The proposed methodology is based on the
determination of the aerodynamic operator with the transfer function technique, which is given, in the frequency
domain, by the analysis of the system response to an exponentially shaped pulse in the time domain. The response in
the frequency domain is obtained with the fast Fourier transform technique available in any mathematical
manipulation tool. Numerical experiments are performed involving unsteady subsonic and transonic flows around a
flat plate and a NACA 0012 airfoil and the results are presented as curves of aerodynamic generalized forces. The
respective Fourier transforms are also determined and then compared with data available in the literature.
Aeroelastic analyses are presented and discussed for the typical section case based on both geometries. Finally, a
discussion is presented of theoretical questions concerning the understanding of a computational fluid dynamics
solver as a discrete-time system and its relevant properties, and the correct aerodynamic input for the efficient

computation of the frequency domain responses.

Nomenclature
a, = dimensionless distance from midchord to elastic axis
b = airfoil semichord, ¢/2
c = airfoil chord
k = reduced frequency, wb/U,,
kj, = flexural stiffness constant
k, = torsional stiffness constant
M., = undisturbed flow Mach number
m = airfoil mass
Q* = dimensionless dynamic pressure, U * /1
r, = dimensionless airfoil radius of gyration about elastic
axis
U, = undisturbed flow velocity
U* = dimensionless flow velocity, U.,/bw,
x, = dimensionless distance from elastic axis to mass center
oy = initial angle of attack
i = airfoil mass ratio, m/mpb?
10} = angular frequency

1. Introduction

EROELASTICITY can be defined as the science which studies
the mutual interaction between aerodynamic, elastic, and
inertial forces. The analysis of dynamic characteristics of either
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complex or simple structures is quite developed nowadays as far as
numerical and experimental methods are concerned. Hence, it is
correct to state that reliability in aeroelastic calculations is strongly
dependent on the correct evaluation of the aerodynamic operator.
Traditionally, the methods developed for determining the
aerodynamic operator for subsonic and supersonic regimes are based
on linearized formulations which do not present the same satisfactory
results in the transonic range. According to Tijdeman [1], this occurs
due to the nonlinearity of transonic flows characterizing a significant
alteration of the flow behavior, even when a profile is submitted to
small perturbations. Ashley [2] reported the use of semi-empirical
corrections to the linearized theory results as a means of improving
flutter predictions. Nevertheless, Ashley himself believed that really
satisfactory aeroelastic quantitative predictions of the transonic
regime should be possible only when accurate, three-dimensional,
unsteady computational fluid dynamics (CFD) codes were
completely developed. Hence, the methodology here presented,
which is based on the ideas of Rausch et al. [3] and Oliveira [4],
intends to obtain the aerodynamic operator for two-dimensional
lifting surfaces employing modern CFD techniques.
Computational fluid dynamics is a subject that has played an
extremely important role in recent studies of aerodynamics. The
possibility of numerically treating a broad range of phenomena
which occur in flows over bodies of practically any geometry has
numerous advantages over experimental determinations, such as
greater flexibility together with time and financial resource savings.
However, obtaining more reliable numerical results for a growing
number of situations has been one of the major recent challenges in
many science fields. Fletcher [5] and Hirsch [6] show that
particularly in aerodynamics, the general phenomena are governed
by the Navier-Stokes equations, which constitute a system of
coupled nonlinear partial differential equations that has no general
analytical solution. Hirsch comments, among other issues
concerning CFD techniques, on how to simplify the mathematical
models conveniently to ease the numerical treatment of each case.
Space and time discretization schemes, as well as convergence
acceleration techniques, boundary condition definition, and other
numerical integration tools are available and largely used to solve
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such models. After selection of the theoretical model, it is necessary
to define the physical domain where the flows take place,
characterizing the boundary conditions. This flow solution approach
demands the discrete representation of the physical domain to make
the problems numerically coherent defining a computational mesh of
points or regions where the calculations are performed. The mesh
generation, as it is vastly documented in the literature, e.g., Fletcher
[7], is extremely important and decisive in the accuracy and
convergence of the solution. The mesh type is also an essential factor
of the CFD tool behavior. Structured meshes have the advantage of
being well behaved, the existence of an intrinsic correspondence
between adjacent nodes and a very good control over grid refinement
through stretching functions. However, this sort of mesh does not
readily adapt to complicated geometries, requiring the adoption of
more sophisticated multiblock mesh techniques. On the other hand,
unstructured meshes are extremely flexible when it comes to
geometric forms and they allow the use of interesting techniques
such as solution adaptive refinement.

As stated in [8], together with the evolution of the work and
projects performed by Instituto de Aerondutica e Espaco (CTA/IAE),
the demand for aerodynamic parameters has swelled, mainly those
concerning the vehicles developed at this organization. Never-
theless, the application of CFD tools in these parameter analyses has
always been limited by the need of adequate code development and
the lack of computational resources compatible with the work to be
performed. Therefore, a progressive approach has been adopted in
the development of CFD tools at CTA/IAE and Instituto
Tecnolégico de Aerondutica, as presented in [4,9-15].

The present work is based on using CFD to provide the
aerodynamic operator for aeroelastic analysis in an efficient fashion.
Here, a CFD tool is applied with unstructured two-dimensional
meshes around lifting surfaces to obtain unsteady responses to
harmonic, exponentially-shaped pulse, unit sample, and discrete step
motions. The methodology here presented intends to obtain
frequency domain responses from time domain solutions. Such
responses supply the generalized aerodynamic forces necessary as
input to the aeroelastic model. Therefore, with that information, it is
possible to determine the aeroelastic stability margin with a single
expensive CFD run for each structural mode. Moreover, the use of
these four excitations is made to address theoretical questions
concerning the correct input for the efficient calculation of the
frequency domain responses. Furthermore, there is also interest in
considering the compatibility of continuous and discrete-time
signals, hence addressing the ideas presented in [4,16-18]. The
correct assessment of such questions is of major importance in the
area of reduced-order models for aeroelastic and aeroservoelastic
applications.

II. Aerodynamic Theoretical Formulation

The CFD tool applied in this work is based on the two-dimensional
Euler equations, which represent two-dimensional, compressible,
rotational, inviscid, and nonlinear flows. Therefore, it is completely
capable of capturing the shock waves present in transonic flows.
Because of the use of unstructured meshes and the adoption of the
finite volume approach, these equations are written in Cartesian
form. Furthermore, as usual in CFD applications, flux vectors are
employed and the equations are nondimensionalized. Hence, they
can be written as

3/]Qd)cdy—}—/(Edy—|—Fdx)=0 (1)
ar Jlv s

In Eq. (1), V represents the control volume or, more precisely, its
area in the two-dimensional case; S is its surface, or its two-
dimensional side edges; and Q is the vector of conserved properties
of the flow, given by

Q={p pu pv e}’ 2

E and F are the inviscid flux vectors in the x and y directions,
respectively, defined as

pU pV
oulU + p _ ouV
E= pvU ’ F pvV +p ®
(e+p)U+xp (e+p)V+yp

The nomenclature adopted here is the usual in CFD: p is the
density, # and v are the Cartesian velocity components, and e is the
total energy per unity volume. The pressure p is given by the perfect
gas equation, written as

p==D]e= 3o+ )] @

Once again, as usual, y represents the ratio of specific heats. The
contravariant velocity components U and V are determined by

U=u—x, and V=v—y, )

where x, and y, are the Cartesian components of the mesh velocity in
the unsteady case. For further details on the theoretical formulation,
such as boundary and initial conditions, the interested reader should
refer to [8].

III. Numerical Formulation

The algorithm presented here is based on a cell-centered, finite
volume scheme in which the stored information is actually the
average value of the conserved properties throughout the entire
control volume. These mean values are defined as

1
Ql-:vi//Videdy ©)

Equation (1) can then be rewritten for each ith cell as
0
E(ViQ,-)wL/(Edy—Fdx):O @)
Si

The remaining integration in Eq. (7) represents the flux of the
vector quantities E and F through each control volume boundary.
This code was developed to be used with unstructured meshes
composed of triangles. The flux, therefore, can be evaluated as the
sum of the flux contributions of each edge, which is obtained
approximately from the average of the neighboring conserved
quantities, as proposed by Jameson and Mavriplis [19]. Hence, the
convective operator C is defined and given by

L»(Edy—Fdx)=C(Qi)

3
=Y [EQ) i, — i) — F(Qu)(xi, — x,)] ®)
k=1
where

Q=50 +0) ©

and the (xy, , yx,) and (xy, , yx,) coordinates are relative to the vertices
which define the interface between the cells.

The Euler equations are a set of nondissipative hyperbolic
conservation laws. Thus, as discussed by Pulliam [20], their
numerical treatment requires an inherently dissipative discretization
scheme or the introduction of artificial dissipation terms to avoid
oscillations near shock waves and to damp high frequency uncoupled
error modes. Oliveira [4] states that the flux evaluation method
adopted in the present CFD tool is analogous to a centered difference
scheme in finite difference formulation. In this case, Pulliam [20]
shows that the addition of artificial dissipation terms is needed.
Details on the adopted artificial dissipation scheme are given in [§].

The numerical solution is advanced in time using a second-order
accurate, five-stage, explicit, hybrid scheme which evolved from the
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consideration of Runge—Kutta time stepping schemes [21,22]. This
scheme, already including the necessary terms to account for changes
in cell area due to mesh motion or deformation [23], can be written as

0" =0

vr Ay

0" =570 = O lC@") — D)
v Ay

0 =T @ = O (@) — D)
v Ay

0" =7 @ — O35 C@) - D)) (10)
1% Ar;

0" =3 0 — Ou i lC@) — D))
v Ar;

07 =g @ — OsrrC@) ~ D)

/_1+] Q(_5)

where the superscripts n and n + 1 indicate that these are property
values at the beginning and the end of the nth time step, respectively.
Furthermore, Atz is the time step. The values used for the ®
coefficients, as suggested by Mavriplis [22], are

QY

In Eq. (10) the convective operator, C(Q), is evaluated at every
stage of the integration process, but the artificial dissipation operator,
D(Q), is only evaluated at the two initial stages. This is done with the
objective of saving computational time because the evaluation of the
latter is rather expensive. As discussed by Jameson et al. [21], this
type of procedure is known to provide adequate numerical damping
characteristics while achieving the desired reduction in computa-
tional cost.

Steady-state solutions for the mean flight condition of interest
must be obtained before the unsteady calculation can be started.
Therefore, it is also important to guarantee an acceptable efficiency
for the code in steady-state mode. In the present work, both local time
stepping and implicit residual smoothing [19,24,25] are employed to
accelerate convergence to steady state. More details on convergence
acceleration techniques are found in [4,8].

IV. Mesh Generation and Movement

The meshes used in the present work were generated with the
commercial grid generator ICEM CFD®©, a very powerful tool
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capable of creating sophisticated meshes with very good refinement
and grid quality control. Figure 1 shows samples of the meshes
around a NACA 0012 profile and a flat plate which were employed to
obtain the present results.

Unsteady calculations involve body motion and, therefore, the
computational mesh should be somehow adjusted to take this motion
into account. The approach adopted here is to keep the far-field
boundary fixed and to move the interior grid points to accommodate
the prescribed body motion. This is done following the ideas
presented in [23], where it is assumed that each side of the triangle is
modeled as a spring with constant stiffness inversely proportional to
the length of the side. Hence, once points on the body surface have
been moved and assuming that the far-field boundary is fixed, a set of
static equilibrium equations can be solved for the position of the
interior nodes [4]. Control volume areas for the new grid can then be
computed. The mesh velocity components can also be evaluated
considering the new and old point positions and the time step. For
further details, the interested reader should refer to [8].

V. Aeroelastic Formulation

The test case considered in the present work is widely known and
reported in the literature [4,26]. The dynamic system represented in
the typical section is a rigid airfoil section with two degrees of
freedom, plunging and pitching, subjected to aerodynamic, inertial,
and elastic forces and moments. The governing equation of such
dynamical system is given by

[M]{ii(0)} + [Klin(0)} = {Qa(0)} (12)

where the generalized mass and stiffness matrices are, respectively,
given by

=l ] w=[Y ] o

Xo Ty T,

and the generalized coordinate and force vectors are, respectively,

T
O} =160 «),  {(Qa(n)={20 2m0l’ (1)
where £ = h/b is the plunge mode coordinate and « is the pitch
mode. In the previous equations, w;, and w, are the free vibration
circular frequencies of each mode, which are defined as

w, = \/E, W, = \/k: (15)
m 1,

Moreover, I, denotes the section moment of inertia with respect to
the elastic axis over which pitching takes place. Finally, the radius of
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Fig. 1 Mesh around a) NACA 0012 profile with 292 wall points, and b) flat plate with 236 wall points.
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gyration is given by

I
=\ (16)

Considering the methodology proposed in Sec. VI, this system can
be more easily studied in the Laplace domain. Applying the Laplace
transform to Eq. (12), one can obtain

s MI{n(s)} + [K{n(s)} = {Qa(s)} (17)

Therefore, as mentioned previously, the main objective of the present
study is to efficiently determine the generalized aerodynamic force
vector {Qa(s)} in the Laplace domain for an arbitrary structural
behavior. As will be shown, this is performed by evaluating this
vector over the frequency range of interest and, by making use of the
analytical continuation principle [27], extending such result to the
entire s-plane. As presented by Oliveira [4], assuming linearity with
regard to the modal motion, one can write

2
(Qa()} =~ AN} 18)

The aerodynamic influence coefficient matrix [A(s)] is given by

_[=cl(s)/2 =Cly(s)
[A)] = [ _C,hnh(s) 2Cma(s)]

where the o and & subscripts indicate the pitch and plunge mode
contributions, respectively.

19)

VI. Aeroelastic Analysis Methodology

The unsteady movements related to the aeroelastic phenomena,
mainly flutter, can be represented by a series of harmonic motions.
Therefore, the construction of the acrodynamic operator results from
the evaluation of aerodynamic responses to harmonic excitations of
various frequencies. However, instead of performing many
expensive computational simulations for different frequencies, a
large computational cost reduction can be obtained with the use of
impulse or indicial excitations. As shown in [28], the impulse and
indicial functions are capable of uniformly exciting the entire
frequency domain simultaneously.

Therefore, the aerodynamic calculations for a determined flight
condition are reduced to a single computational run for each
structural mode. Moreover, the only hypotheses adopted are that the
aerodynamic generalized forces are linear with regard to the motion
amplitudes and that the total structural displacement can be obtained
from the linear superposition of all individual modal displacements.
However, this methodology captures the flow nonlinearities and
dynamics according to the aerodynamic model applied, and the
linear results are obtained by keeping the motion amplitude very low.
Furthermore, as the Euler formulation is used in the present work,
one cannot expect for nonlinearities related to viscous effects.

Nevertheless, the theoretical impulse and indicial motions are
defined as singularities, a fact which has led researchers, at least until
very recently, to believe that they were both numerically intractable
[4,17]. Hence, other smoother excitation functions have been
employed [16,29] to overcome such numerical problems. The
motion used here is the one suggested in [17], which is defined as

2
r 1 - -
fp (Z) = 4(;max) exp (2 1—;‘“;)’ 0=1<tpn (20)

Z [max

~1

)

where the bar indicates the dimensionless time and 7,,, is the
excitation duration. As can be seen in Fig. 2, the function defined in
Eq. (20) guarantees a smooth motion.

However, there is recent work [18,30,31] which shows that a more
suitable approach exists to understand computational aerodynamic
responses. Such work points out the fact that once the aerodynamic
model is represented through a numerical scheme, it becomes a
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Fig. 2 Exponentially shaped pulse excitation in angle of attack.

discrete-time system rather than a continuous-time system. The
consequences of such fact are explained in Sec. VII, but for now it is
convenient to cite that there are discrete-time signals that present
completely equivalent properties to impulse and indicial excitations
and they are known as unit sample and discrete step [18,32],
respectively. These are not at all singularities and are very well
defined for numerical applications such as CFD. Thus, it is important
to address the CFD response to such excitations and to evaluate the
most convenient excitation, whether exponentially-shaped pulse,
unit sample, or discrete step. This is one of the issues this work
attempts to cover.

The methodology consists, then, in obtaining a transfer function in
the frequency domain applicable to any desirable input. This transfer
function is the frequency domain response to the unit sample
excitation. Therefore, this is accomplished using the following steps:

1) Obtain the steady aerodynamic solution for a given Mach
number and angle of attack.

2) Perform unsteady acrodynamic response evaluations departing
from the steady solution given in the preceding item. This stage leads
to time responses in terms of aerodynamic coefficients as a result to
excitations of each of the modes.

3) Obtain the discrete Fourier transform of the time responses
applying a fast Fourier transform (FFT) algorithm. This is done in the
present work employing the FFT capability available in the
commercial program MATLAB®.

4) Approximate the obtained data with an interpolating
polynomial.

5) Formulate the corresponding eigenvalue problem, valid for a
determined range of dimensionless velocities, and, finally, perform
flutter velocity prediction through a root locus analysis.

As shown by Oliveira [4], the corresponding frequency domain
points resulting from the FFT procedure are given by

1l n ayn
=——=-2 . =0,1,2,..., Npay 21
ul AtN AtcN " @l
_|N/2, if Nis even
N max _{ (N —1)/2, otherwise (22)

Equation (21), rewritten in terms of the reduced frequency based on
the half-chord length, stands as

2
(@b _2nfb o)
U, U.
T n
k[n] = -— i =0,1,2,...,N, 24
[n] MOCAtN’ l ’ ’ ’ ’ max ( )

As the exponentially shaped input is not a unit sample excitation,
the real unit sample response is evaluated using a well-known
property of the convolution theorem, as given in [32]:
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Fig. 3 Differences between unit sample sequence and sampled function.

gln] = £,[n] * iln] = Gln] = F, [n]I[n] 25)
1] = f[[”n]] (26)

p

where i[n] represents the time response to a unit sample movement,
fplnlis the sequence that results from the sampling of the function in
Eq. (20), and g[n] is the response to the sampled exponentially
shaped excitation. The sequences in capital letters are discrete
Fourier transforms of the corresponding sequences in lower case
letters. Therefore, after obtaining the FFT of the time response, it has
to be divided by the FFT of the input sequence to obtain frequency
domain responses. Although the input is not the exact unit sample
excitation, it is capable of exciting the reduced frequencies of interest
in aeroelastic studies.

The frequency domain responses obtained by these steps consistin
a set of numerical values, which are not convenient for the solution of
Eq. (17). Therefore, it is necessary to approximate these data using
interpolating polynomials, as previously stated. The polynomial
used in the present work is the one used by Karpel [33], Oliveira [4],
and Abel [34]. It is originally proposed by Roger [35] and it is given,
already in the Laplace domain, by

[A(s)] = [A] + [Al](Ui)s LAY (ULOO)

(A, ls
Y 7

m=

where f,, introduces the aerodynamic lags with respect to the
structural modes, and they are arbitrarily selected from the range of
reduced frequencies of interest. Moreover, [A,] are the
approximating coefficient matrices given by a least squares
optimization method, where s = ikU,/b. Different ways of
evaluating these matrices based on the same optimization principle
are presented in [4,34]. Both ways result in the same interpolation
polynomials when the same poles are used. There also are other
suggestions of approximating polynomials, such as the approach
givenin [36], but they have not been tested by the present authors yet.

VII. CFD Solver as a Discrete-Time System

As aeronautical researchers are generally used to dealing with
continuous-time problems, it has been very common in the literature
to look at CFD solvers as mere approximations to continuous-time
systems. Therefore, it is equally common to use continuous-time
system properties and thinking when performing CFD simulations
tlme appr0x1mat10ns. Hence, as shown by Sllva [ g;], once the
governing equations have been discretized, the resulting numerical
scheme is actually a discrete-time system which has its own
properties and peculiarities.

This mistake has led many authors [4,16,17,29] to justify the use
of smooth pulse excitations because the theoretical continuous-time
impulse and indicial excitations are not numerically feasible.
Nevertheless, Silva [18] has suggested the use of equivalent discrete-

time excitations: unit sample and discrete step [32]. Actually the term
“step” is generally used rather than “discrete step,” but this will be the
terminology adopted throughout this paper to avoid confusion with
the continuous-time indicial function. The unit sample sequence is
given by

0, n#0
o[n] = { I n=0 (28)
and the discrete step sequence is
0, n<0
uln] = { I n>0 (29)

or, equivalently,

uln] = Z 8li] = Za[n —i] (30)

i=—00

Special attention must be paid not to confuse the unit sample with a
sampled triangular continuous-time function. Figure 3 is an example
of how different these can be. Figure 3a shows a standard unit sample
sequence, and Fig. 3b a continuous triangular function with the
corresponding samples. At first, both the sampled function and the
unit sample sequence are identical. But now consider the same
function sampled with a different time step, half of the original one.
This is presented in Fig. 3d. However, the unit sample sequence input
does not depend on the time step, what is demonstrated in Fig. 3¢
which is exactly the same as Fig. 3a, but with a different horizontal
axis scale.

Such sequences formally hold properties very similar to the ones
attributed to the impulse and step functions. Namely, if a linear time-
invariant discrete system is submitted to a unit sample excitation,
then the correspondent response will contain all the information
about the system and the response to every other input is given by the
following convolution sum [32]:

i infi]h[n — i] = i inn — ijh[n]

@3

out[n] = in[n] * h[n] =

where in[n] is a generic input sequence, out[n] is the respective
response, and A[n] is the system response to a unit sample input. It is
very important to emphasize that, although the convolution sum
given in Eq. (31) resembles the convolution integral[28], it is not an
approximation to such integral, but a formally defined discrete
operation. Moreover, the unit sample rigorously excites uniformly
the complete frequency domain.

The discrete step response also characterizes a discrete system
because one can reproduce the unit sample response from it. To
demonstrate this fact, it is convenient to recall the convolution

property
S[n] = u[n] * hln] (32)

Combining Egs. (30) and (32), one obtains
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Sil= 3 3 sl -1 @)

Jj=—00 i=—00

Similarly,

r o] i—1 00
Sin—1]= )" > Slhln—1—r= > > 8jlaln—1i]

Jj=—00 r=—00 J=—00 i=—00
(34)
Finally, subtracting Eq. (34) from Eq. (32), one gets
Sln) = S[n—1]= " 8[ilh[n — i] = hln] (35)

i=—00

Thus, theoretically, it would be more convenient, and even
computationally cheaper (the transient solution should die out more
rapidly), to acquire CFD results submitting the body to either unit-
sample or discrete-step-type perturbations. This has been tried by
some authors [18,30,31], but Raveh [31] has shown that some
numerical complications may arise when simulating such cases. This
occurs due to the large velocities induced by sharp motions, which
may exceed the velocity the numerical time marching scheme can
capture. Naturally, it all depends on the numerical formulation used
in the CFD solver, input amplitude, and time step, but [18,30,31]
demonstrate examples of a relatively successful application of this
new approach. Additionally, Raveh [31] concludes that the discrete
step excitation tends to be less sensitive to the simulation parameters
than the unit sample.

All this reasoning does not invalidate the use of the exponentially
shaped pulse, though it changes the way it is understood. This is
because it should be put as a discrete input sequence derived from
sampling the continuous function. However, it is obvious that, in the
face of these new proposals, the authors are interested in evaluating
their usage with the present CFD solver and also in comparing results
and efficiency. Such discussions are presented in the results part of
this paper.

Another question raised in [18,38] concerns the correct definition
of the aerodynamic input function. For the CAP-TSD code used in
[18,38], which is based on a transonic small disturbance formulation,
it is proposed that such function should be given by the downwash,
which, for the excitation of a given mode, is written as [18]

w(x,y, 1) = ¢/ (Y)Y (1) + p(x. Y)Y (1) (36)

where ¢(x,y) is the modeshape, ¢'(x,y) is the slope of the
modeshape, ¥(7) is the generalized coordinate, and v/(¢) is its time
derivative. Therefore, the input excitation may actually be
interpreted as a two-channel input, i.e., each term is a separate
input channel. This means that each channel should be excited
individually using a unit sample or discrete step input and, for the
linear case, the final solution would come from the superposition of
both answers. Naturally, for an Euler flow solver, as the one
employed in the present work, the downwash function is not used for
the boundary condition as in the CAP-TSD code. However, the
boundary condition implementation in Euler flow solvers reflects the
exact same physical principle of the downwash function, which is the
fact that flow must be tangent to the wall boundary and, more
important, it also presents a two-term dependency.

The two-channel input argument ruins all of the procedure
proposed in the preceding section of the present paper, which is based
on the single-input premise. This is because it is not possible to
employ a smooth input function without exciting the derivative term.
Actually, the procedure could eventually work when the input
function used is smooth enough such that its derivative is small. In
such cases, neglecting the influence of the second term does not lead
to relevant errors. But this is not true when the slopes of the
modeshapes are zero, as in the case of the plunge mode in the typical
section model. In that case, Silva [18] argues that the mentioned
procedure would be incorrect.

win]

yin-1]
DETERMINE
MESH VELOCITIES
SET BOUNDARY
CONDITIONS
CALCULATE
FLUXES
ADVANCE
IN TIME
CALCULATE
RESIDUE

Fig. 4 Scheme of input role on establishment of boundary conditions.

Fortunately, the present authors have shown, in previous work [8],
good results obtained applying the proposed methodology, even for
the plunge mode. The explanation for such contradictory results lies
on the fact that, for Euler or Navier—Stokes solvers, itis not necessary
to separate the influence of the motion and its derivative into
individual channels because they are not independent functions. This
separation is obviously convenient to avoid dealing with the
derivative of the discontinuous step and impulse functions. Actually,
the latter is not a function in the common use of the word, but rather a
type of function called “generalized function” [39], and the
derivation of both becomes coherent only in certain integral
applications. However, in the frequency domain, the relationship
between the motion and its derivative can be easily seen through the
Laplace transform of Eq. (36),

W(x.y.s) =¢'(x. y)¥(s) + s¢(x. y)¥(s)
=[#'(x.y) + s¢(x, )Y (s) (37

Thus, the system depends only on the input ¥. Hence, although the
system can be viewed to present multiple-channel inputs, the
interpretation of 1 as a single-input is equivalent. Furthermore, as the
new approach suggests the use of discrete-time sequences, there is no
need to bother with such derivatives. As long as the time step is
sufficiently small for a given frequency content, the approximation

iy Yl —yln —1]

Ynl~ A (38)
holds. In other words, the velocity at any cell edge adjacent to a solid
wall at iteration n depends only on the input value at iterations »n and
n — 1. This approximation, however, is not explicitly implemented
in the numerical algorithm. What is really done is schematically
presented in Fig. 4. In Sec. VIII, some test cases are presented
proving this reasoning to be correct.

There is also a discussion on the need to adjust generic excitations
to properly excite the desired frequency range. However, for the
exponentially shaped pulse, experience has shown it to be very
straightforward and easy to use for the present case. Moreover, as
mentioned before, although the unit step or discrete step theoretically
should always work, there are numerical limitations with such inputs
that also require a calibration procedure, if it is at all possible to
overcome such limitations. Therefore, this need for adjustments of
the exponentially shaped pulse is not really a disadvantage compared
to other excitations.

VIII. Results and Discussion

Before attempting applications of the proposed methodology,
some validation simulations are performed with the CFD tool. This
has been done throughout the entire development of this code as can
be seen in [4,8,15,40]. Once the CFD tool is tested and proved to be
reliable, the next step is to proceed in obtaining the unsteady
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Table 1 Flat plate test cases

1505

Case Mode M, o) Amplitude Excitation Width? Time step?
IF pitch 0.5 0.0 0.10 deg exponentially shaped pulse 01 0.003
2F plunge 0.5 0.0 0.01c exponentially shaped pulse 01 0.003

“In dimensionless time units
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Fig. 5 Time responses to case 1F (pitch mode exponentially shaped pulse excitation).
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Fig. 6 Time responses to case 2F (plunge mode exponentially shaped pulse excitation).
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Fig. 7 Frequency responses to case 1F.
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responses of interest. The approach selected is to reproduce the
numerical results presented by Rausch et al. [3].

A. Flat Plate

For the first set of simulations, an exponentially shaped excitation,
as the one presented in Fig. 2, is used with a 1 dimensionless time unit
width. Actually, although this is not demonstrated here, the authors
have verified that, within a relatively large range, the pulse width has

2k
o [
4
[ Imaginary
-6
N Present
8 o Ref. 3
I T T S R
0 0.2 0.4 0.6 0.8 1
k

a) Cl frequency response

little influence in final frequency domain responses. Table 1 shows
all the information on the two cases used when simulating the flat
plate geometry. The pitch motion occurs about the quarter-chord
point. The reader should note that, although this work is primarily
aimed at the transonic regime, these purely subsonic cases provide
good tests for the proposed methodology because there are reliable
linearized solutions available.

The responses obtained are shown here in terms of the lift and
moment coefficients, where the moment is measured about the

[ Present
15k Ref. 3
1 ;
E [
o [
05
oF

Fig. 8 Frequency responses to case 2F.
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Fig. 9 Approximating polynomials for the frequency responses to case 1F.
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Fig. 10 Approximating polynomials for the frequency responses to case 2F.
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Fig. 11 Comparisons of dimensionless dynamic pressure root loci for
the 1F and 2F cases.

quarter-chord point and it is positive in the nose-down direction.
Figure 5 presents time responses for the pitch mode, whereas Fig. 6
presents time responses for the plunge one. It is relevant to note that
no time response to this particular excitation is available in the
literature. Hence, the results cannot be compared. Furthermore, these
two cases are integrated up to 300 dimensionless time units, but only
the first 20 dimensionless time units of such responses are shown to
emphasize the most relevant part of the transient solution.

Table 2 Comparisons of flutter points for the 1F and 2F cases

1507

The corresponding frequency domain responses, together with the
numerical results given by Rausch et al. [3], also obtained with the
Euler formulation, are shown in Figs. 7 and 8. These results show a
very good agreement between calculations performed by the present
authors and the literature data. Comparisons between results
obtained with the Euler equations and the linear theory are presented
in [3], and the agreement is fairly good for this case.

These results are interpolated with the use of 10 poles within the
0.001-0.99 reduced frequency range. The resulting polynomials are
plotted in Figs. 9 and 10. It can be seen that the corresponding CFD
results are perfectly represented by the polynomial approximations
in the reduced frequency range of interest.

When these polynomials are substituted in Eq. (17), the aeroelastic
problem is reduced to an eigenvalue problem as demonstrated in [4].
This problem depends on the dimensionless velocity parameter. The
solution of such eigenvalue problem yields a root locus which is
given in Fig. 11 as a function of the dimensionless dynamic pressure
parameter. The eigenvalues are nondimensionalized with w,, and
their real and imaginary parts are denoted by o and w, respectively.
Indicated computational points in the root loci are separated by
AQ* = 1. The flutter points occur when the real part of one of the
eigenvalues becomes zero, characterizing undamped oscillations.
The flutter point obtained in this case is compared with those of [3] in
Table 2. The three given root loci and respective flutter points agree
very well, as one could expect from the similarity of the frequency
domain results. This example shows the coherence of the proposed
methodology and of the CFD solver results.

B. NACA 0012 Airfoil

The authors perform a similar analysis fora NACA 0012 airfoil in
the transonic regime. Comparison results for this case are also found
in [3]. In this case, more than one excitation sequence is used. Table 3

Reference Mode U* o* /o shows the several cases simulated for the NACA 0012 configuration.
Present plunge 16.4 45 208 Again, as in the _ﬂat plate cases, the pitch motion occurs about the
Euler [3] plunge 17.0 4.8 227 quarter-chord point. o
Linear [3] plunge 16.6 4.6 2.10 The time responses for these cases are presented in Figs. 12—17.
The total integration time at all cases is 300 dimensionless time units,
Table 3 NACA 0012 test cases
Case Mode M, o Amplitude Excitation Width? Time step?
IN pitch 0.8 0.0 0.10 deg EP 01 0.003
2N plunge 0.8 0.0 0.001 ¢ EP 01 0.003
3N pitch 0.8 0.0 0.0001 deg us e 0.003
4N plunge 0.8 0.0 0.000001 ¢ us —_— 0.003
5N pitch 0.8 0.0 0.01 deg DS S 0.003
6N plunge 0.8 0.0 0.0001 ¢ DS —_— 0.003
“In dimensionless time units
1.2E-02 |- F
r 4.0E-03
8.0E-03 |- I
r 2.0E-03
4.0E-03 0.0E+00 |-
3} E T
o -
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o
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dimensionless time

a) Cl response

o

1 4 5

2 3
dimensionless time
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Fig. 12 Time responses to case 1N (pitch mode exponentially shaped pulse excitation).
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but only the most relevant parts of the solutions are presented.
Furthermore, in case 5N, the solution converges to an asymptotic
value different from the initial value. This occurs because the airfoil
does not return to its initial configuration.

The frequency domain responses are shown in Figs. 18 and 19. A
series of harmonic solutions for different reduced frequencies is also
included to assess the correctness of these responses, at least within
the CFD solution context. These harmonic (H) solutions are obtained

2.4E-02

1.6E-02

0.0E+00

-8.0E-03

1.6E-02 L1 L1 - L1 .

0 1 2 3 4
dimensionless time

a) Cl response

imposing three cycles of harmonic motion to the body for each
reduced frequency. However, only the third cycle is considered in the
solution, because the first two cycles correspond to the transient part
of the response. Moreover, one can easily see that the exponentially
shaped (EP) excitation offers the best results. Although, in this case,
the results obtained in the present study with the exponentially
shaped pulse do not perfectly match the ones found in the literature
[3], they are satisfactorily close. Furthermore, the agreement

6.0E-03

4.0E-03

2.0E-03
£

(8]
0.0E+00

-2.0E-03

-4.0E-03

L P P - P P L
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Fig. 13 Time responses to case 2N (plunge mode exponentially shaped pulse excitation).
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Fig. 14 Time responses to case 3N (pitch mode unit sample excitation).
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Fig. 15 Time responses to case 4N (plunge mode unit sample excitation).
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Fig. 16 Time responses to case SN (pitch mode discrete step excitation).

between the exponentially shaped pulse responses and the harmonic
ones, especially in the plunge mode, is a proof that the use of a single-
channel input approach is correct in the context of an Euler solver.
When it comes to the discrete step (DS) and unit sample (US)
responses, it is clear, especially for the plunge mode, that they do not
agree with solutions given by other methods. However, the overall
behavior is quite similar, which the authors believe to indicate that
good solutions can be achieved. The subject still requires further
investigation, but this is beyond the scope of the present paper.
Because only the responses to the exponentially shaped pulse
come close to the expected values, the authors constructed
interpolation polynomials only for cases IN and 2N. The
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T L -
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a) Cl response

corresponding curves are shown in Figs. 20 and 21. In the present
study, 15 poles are used in the 0.001-0.40 reduced frequency range.
Once again, the polynomial interpolation process has shown to
provide excellent results. Additionally, one may notice that although
the reduced frequency range, where the poles are allocated, does not
cover the entire range of approximated points, the resulting
polynomial still holds as a close approximation. This occurs because
all points are used in the least squares optimization. Therefore, one
may concentrate the poles in the most convenient regions without
compromising the overall results, just as demonstrated in this case.

Finally, with these results, it is possible to solve an aeroelastic
problem submitted to a transonic flow. The eigenvalue problem is
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Fig. 17 Time responses to case 6N (plunge mode discrete step excitation).
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Fig. 18 Frequency responses to cases 1N, 3N, and 5N (pitch mode excitation).
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Fig. 19 Frequency responses to cases 2N, 4N and 6N (plunge mode excitation).
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Fig. 20

identical to the subsonic case [4]. The only difference lies in the
aerodynamic coefficient matrix. The resulting root locus is presented
in Fig. 22 with Q* as parameter. Indicated computational points are
separated by AQ* = 0.1. Data found in the literature [3] are also
included. Once again, the agreement between the present results and
those given in [3] is very good, at least for the plunge mode. A larger
difference is seen in the pitch mode. However, it could be expected
due to the differences presented in Fig. 18, especially in the moment
coefficient, i.e., the pitch mode generalized force due to a pitch
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Cm

0.5

0.25

L L L L

o CFD Result
Interpolation

b) Approximate function for Cm

Approximating polynomials for frequency responses to case 1N (pitch mode excitation).

excitation. Furthermore, the flutter points are indicated in Table 4.
Such values reinforce the solution agreement. It is important to notice
the difference between flutter points indicated with the linear and
Euler formulations. This is a typical example of how the linear theory
may predict flutter speeds which are larger than the actual values for
the flutter boundary, which is an unsafe result from the point of view
of an engineer trying to perform the flutter clearance for a given
configuration. Such decrease in the flutter speeds in the transonic
regime characterizes the well-known “transonic dip” phenomenon.
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Fig. 22 Flutter root locus for a NACA 0012 typical section (M., = 0.8, o, = 0). On the right, a detailed view of the plunge mode root locus.

The ability to correctly predict the flutter condition within the
transonic dip range of Mach numbers is the major motivation for the
development of the present methodology.

IX. Conclusions

The paper has shown successful aeroelastic analysis results
obtained using the proposed indicial methodology. All intermediary
steps are also presented and discussed in detail. The results are a
demonstration of the appropriateness of the proposed formulation
and of the correct implementation of the entire methodology,
providing the required capabilities to efficiently study aeroelastic
stability problems using modern CFD tools. This is especially
important for transonic cases, where the linear theory may
overpredict the flutter velocity. Therefore, this work represents a
fundamental evolution in the capability of performing numerical
aeroelastic studies at CTA/IAE.

Moreover, the authors expect to have made contributions toward
the solution of some of the current theoretical questions concerning
this sort of approach in CFD-based analyses. The authors
demonstrated, for instance, that a correct interpretation of the
aerodynamic input function eliminates the need for a two-channel
input formulation. Additionally, it is attempted to obtain results for

Table 4 Comparison of flutter points for a NACA 0012 typical section
My =08, =0)

Reference Mode U* o* w/wo
Present plunge 5.64 0.53 0.92
CFL3D, Euler [3] plunge 5.37 0.48 not informed
Linear [3] plunge 10.65 1.89 not informed

appropriate discrete-time excitations. However, the determination of
responses to the unit sample and discrete step inputs has yielded
numerical difficulties that have not been completely solved yet.
Therefore, it is still too early to draw conclusions about its use with
the present CFD solver. Furthermore, it is important to emphasize
that the closure of such questions is very relevant in many areas,
particularly in the development of reduced-order models for
aeroservoelastic control laws. Hence, the present paper is part of a
work that aims at the improvement of the construction of
aerodynamic reduced-order models for aeroelastic purposes.
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